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1 Introduction

The problem of enumerating the strings in a language
L is to list all the elements in L in some order. Several
papers study this problem. For example, Enumerating
all spanning trees, [25], minimal transversals for some
Geometric Hypergraphs, [14], maximal cliques, [33],
ordered trees, [13], certain cuts in graphs, [47, 53],
paths in a graph, [39], bipartite perfect matchings,
[45], maximum and maximal matchings in bipartite
graphs, [44], and directed spanning trees in a directed
graph [43]. See the list in [18] for other enumeration
problems.

One of the challenges in enumeration problems is
to find an order of the elements of L such that finding
the next element in that order can be done in quasi-
linear time in the length of the representation of the
element. The time that the algorithm takes before giv-
ing the first element is called the preprocessing time.
The time of finding the next element is called the delay
time. In [3], Ackerman and Shallit gave a linear pre-
processing and delay time for enumerating the words
of any regular language (expressed as a regular ex-
pression or NFA) in lexicographic order.

Enumeration is also of interest to mathematicians
∗O(N · poly(logN)) where N = n2 is the size of the output.

without addressing the time complexity. Calkin and
Wilf,[8], gave an enumeration of all the rational num-
bers such that the denominator of each fraction is the
numerator of the next one.

Another problem that has received considerable
attention is the problem of ranking the elements of
L. In ranking the goal is to find some total order
on the elements of L where the problem of return-
ing the nth element in that order can be solved in
polynomial time. Obviously, polynomial time rank-
ing implies polynomial time enumeration. In the lit-
erature, the problem of ranking is already solved for
permutations [35, 42] and trees of special properties
[21, 30, 36, 38, 46, 51, 52, 1, 49, 50]. Those also give
enumerating algorithms for such objects.

Let Fq be a finite field with q elements. Let Pn,q
be the set of irreducible polynomials over Fq of de-
gree n and their roots in Fqn . Several algorithms in
the literature use irreducible polynomials of degree n
over finite fields, especially algorithms in coding the-
ory, cryptography and problems that use the Chinese
Remainder Theorem for polynomials [6, 31, 4, 12].
Some other algorithms use only the roots of those
polynomials. See for example [4].

In this paper, we study the following problems

1. Enumeration of any number of irreducible poly-
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nomials of degree n over a finite fields.

2. Enumeration of any number of irreducible poly-
nomials of degree n and their roots over the ex-
tended field.

3. Enumeration of any number of roots of irre-
ducible polynomials of degree n over the ex-
tended field. One root for each polynomial.

There are many papers in the literature that men-
tion the result of enumerating all the irreducible poly-
nomials of degree less than or equal to n but do
not give the exact algebraic complexity of this prob-
lem [7, 11, 37, 16, 17, 26]. In this paper we give
a detailed analysis of deterministic and randomized
algorithms that enumerate any number of irreducible
polynomials of degree n over a finite field and/or their
roots in the extension field in quasilinear1 time cost
per element.

Our algorithm is based on an improved algorithm
for enumerating all the Lyndon words of length n in
linear delay time and the well known reduction of
Lyndon words to irreducible polynomials. In the next
subsection we define the Lyndon word and present the
result of the improved algorithm.

1.1 The Enumeration of Lyndon Words

Let < be any total order on Fq. A Lyndon word (or
string) over Fq of length n is a word w = w1 · · ·wn ∈
Fnq where every rotation wi · · ·wnw1 · · ·wi−1, i 6= 1
of w is lexicographically larger than w. Let Ln,q be
the set of all the Lyndon words over Fq of length n. In
many papers in the literature, it is shown that there is
polynomial time (in n) computable bijective function
φ : Ln,q → Pn,q, where Pn,q is the set of all polyno-
mials of degree n over Fq. So the enumeration prob-
lem of the irreducible polynomials can be reduced to
the problem of enumerating the elements of Ln,q.

Bshouty gave in [4] a large subset L′ ⊆ Ln,q
where any number of words in L′ can be enumerated
in a linear delay time. In fact, one can show that L′
has a small DFA and, therefore, this result follows
from [8]. It is easy to show that the set Ln,q cannot
be accepted by a small size NFA, i.e., size polynomial
in n, so one cannot generalize the above result to all
Ln,q. Duval [11] and Fredricksen et. al., [16, 17] gave
enumeration algorithms of all the words in ∪m≤nLm,q
that run in linear delay time. Berstel and Pocchiola
in [5] and Cattell et. al. in [7, 37] show that, in Duval’s
algorithm, in order to find the next Lyndon word in
∪m≤nLm,q, the amortized number of updates is con-
stant. The number of updtes is the number of symbols

1O(N · poly(logN)) where N = n2 is the size of the output.

that the algorithm change in a Lyndon word in order
to get the next word. Such an algorithm is called CAT
algorithm. See the references in [7] for other CAT al-
gorithms. Kociumaka et. al. gave an algorithm that
finds the rank of a Lyndon word in O(n2 log q) time
and does unranking in O(n3 log2 q) time.

In this paper, we give an enumeration algorithm
of Ln,q with linear delay time. Our algorithm is the
same as Duval’s algorithm with the addition of a sim-
ple data structure. We show that this data structure
enable us to find the next Lyndon word of length n
in constant updates per symbol and therefore in lin-
ear time. We also show that our algorithm is CAT
algorithm and give an upper bound for the amortized
update cost.

Another problem is testing whether a word of
length n is Lyndon word. In [10], Duval gave a lin-
ear time algorithm for such test. In this paper we give
a simple algorithm that uses the suffix trie data struc-
ture and runs in linear time.

This paper is organized as follows. In Section 2
we give the exact arithmetic complexity of the pre-
processing and delay time for enumerating any num-
ber of irreducible polynomials and/or their roots. In
Section 3 we give a simple data structure that enable
us to change Duval’s algorithm to an algorithm that
enumerates all the Lyndon words of length n in lin-
ear delay time. We then show in Section 4 that the
algorithm is CAT algorithm. In Section 5 we give a
simple linear time algorithm that tests whether a word
is a Lyndon word.

2 Enumerating Irreducible Polyno-
mials

In this section we give the analysis for the algebraic
complexity of the preprocessing time and delay time
of enumerating irreducible polynomials of degree n
over a finite field and/or their roots in the extended
field.

Let q be a power of a prime p and Fq be the finite
field with q elements. Our goal is to enumerate all the
irreducible polynomials of degree n over Fq and/or
their roots in the extension field Fqn .

The best deterministic algorithm for construct-
ing an irreducible polynomial over Fq of degree
n has time complexity TD := O(p1/2+εn3+ε +
(log q)2+εn4+ε) for any ε > 0. The best ran-
domized algorithm has time complexity TR :=
O((log n)2+εn2 + (log q)(log n)1+εn) for any ε > 0.
For a comprehensive survey of this problem see [40]
Chapter 3. Obviously, the preprocessing time for enu-
merating irreducible polynomials cannot be less than
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the time for constructing one. Therefore, TD for the
deterministic algorithm, and TR for the randomized
algorithm.

The main idea of the enumeration algorithm is
to enumerate the roots of the irreducible polynomi-
als in the extension field and then construct the poly-
nomials from their roots. Let Fqn be the exten-
sion field of Fq of size qn. One possible represen-
tation of the elements of the field Fqn is by poly-
nomials of degree at most n − 1 in Fq[β]/(f(β))
where f(x) is an irreducible polynomial of degree
n. A normal basis of Fqn is a basis over Fq of
the form N(α) := {α, αq, αq2 , . . . , αqn−1} for some
α ∈ Fqn where N(α) is linearly independent. The
normal basis theorem states that for every finite field
Fqn there is a normal basis N(α). That is, an α
for which N(α) is linearly independent over Fq. It
is known that such an α can be constructed in de-
terministic time O(n3 + (log n)(log log n)(log q)n)
and randomized time O((log log n)2(log n)4n2 +
(log n)(log log n)(log q)n) [22, 27, 29]. The enumer-
ation algorithm will use the normal basis for repre-
senting the elements of Fqn . Notice that the time com-
plexity to find such an element α is less than con-
structing one irreducible polynomial. If we use the
normal basis N(α) for the representation of the el-
ements of Fqn , then every element γ ∈ Fqn has a
unique representation γ = λ1α + λ2α

q + λ3α
q2 +

· · ·+ λnα
qn−1

where λi ∈ Fq for all i.
It is known that any irreducible polynomial g of

degree n over Fq has n distinct roots in Fqn . If
one can find one root γ ∈ Fqn of g then the other
roots are γq, γq

2
, . . . , γq

n−1
and therefore gγ(x) :=

(x − γ)(x − γq) · · · (x − γq
n−1

) = g(x). The
coefficients of gγ(x) can be computed in quadratic
time O(n2 log3 n(log log n)2). See Theorem A and B
in [40] and references within. The element γ =

λ1α + λ2α
q + λ3α

q2 + · · · + λnα
qn−1

is a root of
an irreducible polynomial of degree n if and only if
γ, γq, γq

2
, . . . , γq

n−1
are distinct. Now since

γq
n−k

= λkα+ λk+1α
q · · ·

+λnα
qn−k

+ λ1α
qn−k+1

+ · · ·+ λk−1α
qn−1

, (1)

γ is a root of an irreducible polynomial of degree n if
and only if the following n elements

(λ1, λ2, λ3, · · · , λn), (λ2, λ3, λ4, · · · , λn, λ1)

, (λ3, λ4, λ5, · · · , λn, λ1, λ2), · · · ,

(λn, λ1, λ2, · · · , λn−1) (2)

are distinct.
When (2) happens then we call λ =

(λ1, λ2, λ3, · · · , λn) aperiodic word. We will
write λ as a word λ = λ1λ2λ3 · · ·λn and define
γ(λ) := λ1α + λ2α

q + λ3α
q2 + · · · + λnα

qn−1
.

Therefore

Lemma 1. We have

1. For any word λ = λ1 · · ·λn ∈ Fnq the element
γ(λ) is a root of an irreducible polynomial of de-
gree n if and only if λ is an aperiodic word.

2. Given an aperiodic word λ, the irreducible
polynomial gγ(λ) can be constructed in time2

O((log log n)2(log n)3n2) = Õ(n2).

Obviously, the aperiodic word λ = λ1λ2λ3 · · ·λn
and Rk(λ) := λkλk+1 · · ·λnλ1 · · ·λk−1 corre-
sponds to the same irreducible polynomial. See (1).
That is, gγ(λ) = gγ(Ri(λ)) for any 1 ≤ i ≤ n.
Therefore to avoid enumerating the same polyno-
mial more than once, the algorithm enumerates only
the minimum element (in lexicographic order) among
λ,R2(λ), . . . , Rn(λ). Such an element is called Lyn-
don word. Therefore

Definition 2. The word λ = λ1λ2λ3 · · ·λn is called a
Lyndon word if λ < Ri(λ) for all i = 2, . . . , n.

To enumerate all the irreducible polynomials the
algorithm enumerates all the Lyndon words of length
n and, for each one, it computes the corresponding
irreducible polynomial.

In the next section, we show how to enumerate
all the Lyndon words of length n in linear delay time
O(n). Then from γ(λ) (that corresponds to an irre-
ducible polynomial) the algorithm constructs the irre-
ducible polynomial gγ(λ)(x) and all the other n − 1

roots in quadratic time Õ(n2). Since the size of all
the roots is O(n2), this complexity is quasilinear in
the output size. For the problem of enumerating only
the roots (one root for each irreducible polynomial)
the delay time is O(n).

Let Ln,q be the set of all Lyndon words over Fq of
length n. We have shown how to reduce our problem
to the problem of enumerating all the Lyndon words
over Fq of length n with linear delay time. Algorithm
“Enumerate” in Figure 2 shows the reduction.

Putting all the above algebraic complexities to-
gether, we get the following

Theorem 3. Let ε > 0 be any constant. There is a
randomized enumeration algorithm for

2Here Õ(N) = Õ(N · poly(log(N)))
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000001 000010 000100 001000 010000 100000 

000011 000110 001100 011000 110000 100001 

000101 001010 010100 101000 010001 100010 

000111 001110 011100 111000 110001 100011 

𝜎 𝑅2(𝜎) 𝑅3 𝜎  𝑅4 𝜎  𝑅5(𝜎) 𝑅6(𝜎) 

001001 010010 100100 

000000 

001011 010110 101100 011001 110010 100101 

001101 011010 110100 101001 010011 100110 

001111 011110 110100 111001 110011 100111 

010101 101010 

010111 101110 011101 111010 110101 101011 

011011 110110 101101 

011111 111110 111101 111011 110101 101111 

111111 

𝑥6 + 𝑥5 + 1 

𝑥6 + 𝑥 + 1 

𝑥6 + 𝑥3 + 1 

𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1 

𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 1 

𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1 

𝑥6 + 𝑥4 + 𝑥3 + 𝑥 + 1 

𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1 

𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 1 

Figure 1: A table of the words over Σ = {0, 1}
and all their rotations. The Lyndon words are in
the gray boxes. The Lyndon words of length 6 are
000001, 000011, 000101, 000111, 001011, 001101,
001111, 010111 and 011111. The polynomial f(x) =
x6 + x+ 1 is irreducible over F2 and therefore F26 =
F2[β]/(β6 + β + 1) and every element in F26 can be
represented as λ5β5 + · · ·+ λ1β + λ0. For α = β5 +
β2 + 1 the set N(α) = {α, α2, α4, α8, α16, α32} is a
Normal basis. The Lyndon word 001011 corresponds
to the element γ = α4 + α16 + α32. The element
γ corresponds to the irreducible polynomial gγ(x) =
(x− γ)(x− γ2)(x− γ4)(x− γ8)(x− γ16)(x− γ32)
= x6 + x5 + x4 + x+ 1.

Enumerate(n, q)
Preprocessing

1p) Find an irreducible polynomial f(x) of
degree n over Fq.

2p) Find a normal basis α, αq, . . . , αq
n−1

in Fq[β]/(f(β)).
3p) Let λ = 00 · · · 01

/* The first Lyndon word */
Delay

1d) Define
γ = λ1α+ λ2α

q + · · ·+ λnα
qn−1

.
2d) Compute

gγ(x) := (x− γ)(x− γq) · · · (x− γqn−1
).

3d) Output(gγ(x), γ, γq, · · · , γqn−1
).

4d) Find the next Lyndon word: λ← Next(λ).
5d) If λ = 00 · · · 01 then Halt else Goto 1d.

Figure 2: An enumeration algorithm.

1. the irreducible polynomial over Fq and
their roots in Fqn in preprocessing time
O((log n)4(log log n)2n2 + (log q)(log n)1+εn)
and delay time O((log log n)2(log n)3n2).

2. the roots in Fqn of irreducible polynomials
of degree n over Fq in preprocessing time
O((log n)4(log log n)2n2 + (log q)(log n)1+εn)
and delay time O(n).

Theorem 4. Let ε > 0 be any constant. There is a
deterministic enumeration algorithm for

1. the irreducible polynomial over Fq and
their roots in Fqn in preprocessing time
O(n3+εp1/2+ε + (log q)2+εn4+ε and delay time
O((log log n)2 (log n)3n2).

2. the roots in Fqn of irreducible polynomials
of degree n over Fq in preprocessing time
O(n3+εp1/2+ε + (log q)2+εn4+ε) and delay time
O(n).

3 Linear Delay Time for Enumerat-
ing Ln,q

In this section we give Duval’s algorithm, [11], that
enumerates all the Lyndon words of length at most n,
∪m≤nLm,q, in linear delay time and change it to an al-
gorithm that enumerates the Lyndon words of length
n, Ln,q in linear time. We will use a simple data struc-
ture that enable the algorithm to give the next Lyndon
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word of length n in Duval’s algorithm in a constant
update per symbol and therefore in linear time.

Let Σ = {0, 1, . . . , q − 1} be the alphabet
with the order 0 < 1 < · · · < q − 1. We here
identify Fq with Σ. We will sometime write the
symbols in brackets. For example for q = 5 the word
[q − 1]2[q − 3] is 442. Let w = σ1σ2 · · ·σm be a
Lyndon word for some m ≤ n. To find the next
Lyndon word, (of length ≤ n) Duval’s algorithm
first define the word v = D(w) = whw′ of length n
where w is a non-empty prefix of w and h ≥ 0 (and
therefore h|w| + |w′| = n). That is, v = D(w) =
σ1 · · ·σmσ1 · · ·σm · · ·σ1 · · ·σmσ1 · · ·σ(n mod m).
Then if v is of the form v = ub[q − 1]t where
t ≥ 0 and b 6= [q − 1] then the next Lyndon word in
Duval’s algorithm is P (v) = u[b + 1]. We denote
the next Lyndom word of w (in Duval’s algorithm)
by N(w) := P (D(w)). For example, for q = 3,
n = 7 and w = 0222, v = D(w) = 0222022
and N(w) = P (D(w)) = 02221. Then
N(N(w)) = 022211.

The following lemma is well known. We give the
proof for completeness

Lemma 5. If w is a Lyndon word and |w| < n then
|N(w)| > |w|.

Proof. Let w = ub[q − 1]t where b 6= [q − 1].
Then u1 ≤ b because otherwise we would have
R|u|+1(w) = b[q − 1]tu < ub[q − 1]t = w and
then w is not a Lyndon word. Let D(w) = whw′

where h ≥ 0 and w′ is a nonempty prefix of w.
Since |D(w)| = n > |w| we have h ≥ 1. Since
w′1 = u1 ≤ b < q − 1, we have that |N(w)| =
|P (D(w))| ≥ h|w|+ 1 > |w|.

3.1 The Algorithm

In this subsection we give the data structure and the
algorithm that finds the next Lyndon word of length n
in linear time.

We note here that, in the literature, the data struc-
ture that is used for the Lyndon word is an array of
symbols. All the analyses of the algorithms in the lit-
erature treat an access to an element in an n element
array and comparing it to another symbol as an opera-
tion of time complexity equal to 1. The complexity of
incrementing/decrementing an index 0 ≤ i ≤ n of an
array of length n and comparing two such indices are
not included in the complexity. In this paper, the Lyn-
don words are represented with symbols and numbers
in the range [1, n]. Every access to an element in this
data structure and comparison between two elements
are (as in literature) counted as an operation of time
complexity equal 1. Operations that are done on the

indices of the array (as in literature) are not counted
but their time complexity is linear in the number of
updates.

Let v ∈ Σn. We define the compressed rep-
resentation of v as v = v(0)[q − 1]i1v(1)[q −
1]i2 · · · v(t−1)[q − 1]it where i1, . . . , it−1 are not
zero (it may equal to zero) and v(0), . . . , v(t−1) are
nonempty words that do not contain the symbol [q−1].
If v do not contain the symbol [q − 1] then v =

v(0)[q − 1]0 where [q − 1]0 is the empty word and
v(0) = v. The data structure will be an array (or dou-
ble link list) that contains v(0), i1, v(1), · · · , v(t−1), it
if it 6= 0 and v(0), i1, v(1), · · · , v(t−1) otherwise.

Define ‖v‖ =
∑t−1

j=0 |v(j)| + t. This is the com-
pressed length of the compressed representation of v.
Notice that for a word v = v1 · · · vr that ends with a
symbol vr 6= [q−1] we have P (v) = v1 · · · vr−1[vr+
1] and for u = v · [q − 1]i we have P (u) = P (v).
Therefore ‖v‖ − 1 ≤ ‖P (v)‖ ≤ ‖v‖.

Let v = v(0)[q−1]i1v(1)[q−1]i2 · · · v(t−1)[q−1]it

be any Lyndon word of length n. The next Lyndon
word in Duval’s algorithm is

u(1) := N(v) =

v(0)[q − 1]i1v(1)[q − 1]i2 · · · [q − 1]it−1 · P (v(t−1))

To find the next Lyndon word u(2) after u(1) we take(
u(1)

)h
z(1) of length n where z(1) is a nonempty pre-

fix of u(1) and then u(2) =
(
u(1)

)h · P (z(1)). This is

because z(1)1 = u(1) 6= [q − 1]. Since by Lemma 5,
|u(1)| < |u(2)| < · · · we will eventually get a Lyn-
don word of length n. We now show that using the
compressed representation we have

Lemma 6. The time complexity of computing u(i+1)

from u(i) is at most |u(i+1)| − |u(i)|+ 1.

Proof. Let u(i) = w(0)[q − 1]i1w(1)[q −
1]i2 · · ·w(t−1)[q − 1]it of length less than n.
Then u(i+1) = (u(i))h · P (z(i)) where z(i) is a
nonempty prefix of u(i). So it is enough to show that
P (z(i)) can be computed in at most |P (z(i))| + 1

time. Notice that the length of z(i) is (n mod |u(i)|)
(here the mod is equal to |u(i)| if |u(i)| divides n).
Since z(i) is a prefix of u(i) we have that, in the com-
pressed representation, z(i) = w(0)[q − 1]i1w(1)[q −
1]i2 · · ·w(t′−1)[q − 1]it′ for some t′ ≤ t. Then
P (z(i)) = w(0)[q − 1]i1w(1)[q − 1]i2 · · ·P (w(t′−1)).
Therefore the complexity of computing P (z(i)) is
‖z(i)‖ ≤ |P (z(i))|+ 1.

From the above lemma it follows that
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Theorem 7. Let v be a Lyndon word of length n. Us-
ing the compressed representation, the next Lyndon
word of length n can be computed in linear time.

Proof. To compress v and find u(1) = N(v) we need
a linear time. By Lemma 5 the Lyndon words after
v are u(1), . . . , u(j) where |u(1)| < |u(2)| < · · · <
|u(j)| = n. By Lemma 6 the time complexity of
computing the next Lyndon word u(j) of length n is∑j−1

i=1 |u(i+1)|− |u(i)|+1 ≤ |u(j)|+n = O(n). Then
decompressing the result takes linear time.

We now give a case where Duval’s algorithm fails
to give the next Lyndon word of length n in linear
time. Consider the Lyndon word 01k01k+1 of length
n = 2k + 3. The next Lyndon word in Duval’s algo-
rithm is 01k+1. Then 01k+2, 01k+3, . . . , 012k+2. To
get to the next Lyndon word of length n, 012k+2, the
algorithm does

∑k+2
i=1 i = O(n2) updates.

4 Constant Amortized Time for Enu-
merating Ln,q

In this section, we show that our algorithm in the pre-
vious section is CAT algorithm. That is, it has a con-
stant amortized update cost.

We first give some notation and preliminary re-
sults. Let `n be the number of Lyndon words of length
n, Li = `1 + · · · + `i for all i = 1, . . . , n and
Λn = L1 + · · ·+ Ln = n`1 + (n− 1)`2 + · · ·+ `n.
It is known from [11] that for n ≥ 11 and any q

qn

n

(
1− q

(q − 1)qn/2

)
≤ `n ≤

qn

n
(3)

and for any n and q

Ln ≥
q

q − 1

qn

n
(4)

and

Λn =
q2

(q − 1)2
qn

n
× (5)(

1 +
2

(q − 1)(n− 1)
+O

(
1

(qn)2

))
.

Denote by `n,i the number of Lyndon words of length
n of the form w = ub[q − 1]i where b ∈ Σ\{q − 1}.
Then `n = `n,0 + `n,1 + · · · + `n,n−1. Let `∗n be the
number of Lyndon words of length n that ends with
the symbol [q − 2]. That is, of the form u[q − 2].

For the analysis we will use the following.

Lemma 8. Let w = ub[q − 1]t ∈ Σn where b ∈
Σ\{q − 1} and t ≥ 1. If w = ub[q − 1]t is a Lyndon
word of length n then u[b+ 1] is a Lyndon word.

In particular,

`n,t ≤ `n−t.

If w = u[q− 2] is a Lyndon word of length n then
u[q − 1] is a Lyndon word. In particular,

`∗n ≤ `n,1 + · · ·+ `n,n−1.

Proof. If w = ub[q − 1]t is Lyndon word of length
n then the next Lyndon word in Duvel’s algorithm is
P (D(ub[q − 1]t)) = P (ub[q − 1]t) = u[b+ 1].

If w = u[q − 2] is a Lyndon word of length n
then P (D(w)) = u[q− 1] is the next Lyndon word in
Duvel’s algorithm.

The amortized number of updates of listing all the
Lyndon words of length at most n in Duval’s algo-
rithm is [11]

γn ≤
2Λn
Ln
− 1 = 1 +

2

q − 1
+O

(
1

qn

)
We now show that

Theorem 9. Using the compressed representation the
amortized number of updates for enumerating all the
Lyndon words of length exactly n is at most

3(Λn − Ln) + `n
`n

= 1 +
3q

(q − 1)2
+ o(1)

Proof. The number of Lyndon words of length n of
the forms w = ub where b ∈ Σ, b 6= [q − 1] and
b 6= [q−2] is `n−(`n,1 + · · ·+`n,n−1)−`∗n. The next
word of length n is u[b+ 1]. So each such word takes
one update to find the next word. For words that end
with the symbol [q−2] we need to change this symbol
to [q − 1] and plausibly merge it with the previous
one in the compressed representation. This takes at
most two updates. One for removing this symbol and
one for merging it with the cells of the form [q − 1]t.
Therefore for such words we need 2`∗n updates. Thus,
for Lyndon words that do not ends with [q − 1] we
need `n − (`n,1 + · · ·+ `n,n−1) + `∗n updates.

For strings of the form w = ub[q − 1]t where
b 6= [q − 1] and t ≥ 1 we need at most 3t updates
and therefore at most 3t`n,t for all such words. See
the proof of Theorem 7. Therefore, the total updates
is at most

`n − (`n,1 + · · ·+ `n,n−1) + `∗n+

3(`n,1 + 2`n,2 + · · ·+ (n− 1)`n,n−1)
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By Lemma 4, this is at most

`n + 3(`n−1 + 2`n−2 · · ·+ (n− 1)`1).

Now, the amortized update is

`n + 3(`n−1 + 2`n−2 · · ·+ (n− 1)`1)

`n
=

3(Λn − Ln) + `n
`n

= 1 + 3
Λn − Ln

`n
.

By (3), (4) and (5) we get

1 + 3
Λn − Ln

`n

≤ 1+3

q2

(q−1)2

(
1 + 2

(q−1)(n−1) +O
(

1
(qn)2

))
− q

q−1

1− q
(q−1)qn/2

= 1 + 3

q
(q−1)2 + q2

(q−1)2

(
2

(q−1)(n−1) +O
(

1
(qn)2

))
1− q

(q−1)qn/2

= 1 +
3q

(q − 1)2
+O

(
1

qn

)
.

5 Membership in Ln,q

In this subsection, we study the complexity of de-
ciding membership in Ln,q. That is, given a word
σ ∈ Fnq . Decide whether σ is in Ln,q.

Since σ ∈ Ln,q if and only if for all 1 < i ≤ n,
Ri(σ) > σ, and each comparison of two words of
length n takes O(n) operations, membership can be
decided in time O(n2). Duval in [10] gave a linear
time algorithm. In this subsection, we give a sim-
ple algorithm that decides membership in linear time.
To this end, we need to introduce the suffix tree data
structure.

The suffix tree of a word s is a trie that contains
all the suffixes of s. See for example the suffix tree of
the word s = 1010110$ in Figure 3. A suffix tree of
a word s of length n can be constructed in linear time
in n [48, 15]. Using the suffix tree, one can check if
a word s′ of length |s′| = m is a suffix of s in time
O(m).

Denote by ST (s) the suffix tree of s. Define any
order < on the symbols of s. Define Min(ST (s)) as
follows: Start from the root of the trie and follow, at
each node, the edges with the minimal symbol. Then
Min(ST (s)) is the word that corresponds to this path.
One can find this word in ST (s) in time that is linear
in its length.

1 0 $ 

1 $ 0 

1 

0 

1 

1 

0 

$ 

0 

1 

1 

0 

$ 

1 

0 

$ 

1 

0 

$ 

1 

0 

$ $ 

Figure 3: The suffix tree of s = 1010110$. If 1 <
0 < $ then Min(ST (s)) = 110$. If 0 < 1 < $ then
Min(ST (s)) = 010110$.

The function Min defines the following total or-
der ≺ on the suffixes: Let T = ST (s). Take Min(T )
as the minimum element in that order. Now remove
this word from T and take Min(T ) as the next one in
that order. Repeat the above until the tree is empty.
For example, if 0 < 1 < $ then the order in the suffix
tree in Figure 3 is

010110$, 0110$, 0$, 1010110$, 10110$, 10$, 110$, $.

Obviously, for two suffixes s and r, s ≺ r if and only
if for j = min(|r|, |s|) we have s1 · · · sj < r1 · · · rj
(in the lexicographic order).

We define STm(s) the suffix tree of the suffixes
of s of length at least m. We can construct STm(s)
in linear time in |s| by taking a walk in the suffix tree
ST (s) and remove all the words of length less thanm.
In the same way as above, we define Min(STm(s)).

We now show

Lemma 10. Let $ 6∈ Fq be a symbol. Define any total
order < on Σ = Fq ∪ {$} such that $ < α for all
α ∈ Fq. Let σ ∈ Fnq . Then σ ∈ Ln,q if and only if

Min(STn+2(σσ$)) = σσ$.

Proof. First, notice that every word in STn+2(σσ$)
is of the form σi · · ·σnσ$ for some i = 1, . . . , n. Let
T = STn+2(σσ$).

If Ri(σ) < σ then σi · · ·σnσ1 · · ·σi−1 <
σ, and therefore σi · · ·σnσ$ =
σi · · ·σnσ1 · · ·σi−1σi · · ·σn$ ≺ σσ$. Thus,
Min(T ) 6= σσ$.

If Ri(σ) = σ then σi · · ·σnσ1 · · ·σi−1 = σ, and
then

σi · · ·σnσ =
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σi · · ·σnσ1 · · ·σi−1σi · · ·σn = σσ1 · · ·σn−i+1.

Thus, σi · · ·σnσ$ < σσ1 · · ·σn−i+2 which implies
σi · · ·σnσ$ ≺ σσ$. Therefore, we have Min(T ) 6=
σσ$.

If Ri(σ) > σ then σi · · ·σnσ1 · · ·σi−1 > σ, and
therefore σi · · ·σnσ$ � σσ$ and then Min(T ) 6=
σi · · ·σnσ$.

Now, if σ ∈ Ln,q then Ri(σ) > σ for all 1 < i ≤
n. Thus Min(T ) 6= σi · · ·σnσ$ for all i. Therefore
we have Min(T ) = σσ$. If σ 6∈ Ln,q then there is i
such that Ri(σ) ≤ σ, and then Min(T ) 6= σσ$.

Membership(σ, n, q)
1) Define a total order on Fq ∪ {$}

such that $ is the minimal element.
2) T ←Construct the Suffix Tree of σσ$.
3) Take a walk in T and remove all the words

of length less than n+ 2.
4) Define r the word of the path that starts

from the root and takes, at each node,
the edge with the smallest symbol.

5) If r = σσ$ then σ ∈ Ln,q else σ 6∈ Ln,q.

Figure 4: Membership of σ in Ln,q.

We now prove

Theorem 11. There is a linear time algorithm that
decides whether a word σ is in Ln,q.

Proof. The algorithm is in Figure 4. We use
Lemma 10. The algorithm constructs the trie
STn+2(σσ$). The construction takes linear time
in σσ$ and therefore linear time in n. Finding
Min(STn+2(σσ$)) in a trie takes linear time.
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